【主席树】可持久化线段树模板学习
2021-03-27 12:01:00 # ACM

OI-wiki

有个手绘图

三道模板题(同求第k小)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
//#include <bits/stdc++.h>
//#include <ext/pb_ds/priority_queue.hpp>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <iostream>
#include <algorithm>
//#pragma GCC optimize("O2")
using namespace std;
//using namespace __gnu_pbds;
#define Pair pair<LL,LL>
#define Combine Pair, greater<Pair>, pairing_heap_tag
#define LL long long
#define ll long long
#define ULL unsigned long long
#define ls rt<<1
#define rs rt<<1|1
#define one first
#define two second
#define MS 100009
#define INF 1e18
#define DBINF 1e100
#define Pi acos(-1.0)
#define eps 1e-9
#define mod 99999997

int n,m;
struct node{
int count;
int lls,rrs;
}p[MS<<5];
int rtpos[MS];
int a[MS],ta;
int b[MS];
int tot;

int build(int l,int r){
int rt = ++tot;
if(l == r) return rt;
int m = l+r>>1;
p[rt].lls = build(l,m);
p[rt].rrs = build(m+1,r);
return rt;
}

int update(int lart,int l,int r,int pos){
int rt = ++tot;
p[rt] = p[lart];
p[rt].count++;
if(l == r) return rt;
int m = l+r>>1;
if(m >= pos) p[rt].lls = update(p[lart].lls,l,m,pos);
else p[rt].rrs = update(p[lart].rrs,m+1,r,pos);
return rt;
}

int get_kth(int lrt,int rrt,int l,int r,int k){
if(l == r) return l;
int x = p[p[rrt].lls].count - p[p[lrt].lls].count;
int m = l+r>>1;
if(k <= x) return get_kth(p[lrt].lls,p[rrt].lls,l,m,k);
else return get_kth(p[lrt].rrs,p[rrt].rrs,m+1,r,k-x);
}

void solve(){
tot = 0;
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
b[i] = a[i];
}
sort(a+1,a+n+1);
ta = 1;
for(int i=2;i<=n;i++){
if(a[i] != a[i-1]) a[++ta] = a[i];
}
rtpos[0] = build(1,ta);
for(int i=1;i<=n;i++){
int pos = lower_bound(a+1,a+ta+1,b[i]) - a;
rtpos[i] = update(rtpos[i-1],1,ta,pos);
}
while(m--){
int l,r,k;
scanf("%d %d %d",&l,&r,&k);
//k = r-l+1-k+1;
int cc = get_kth(rtpos[l-1],rtpos[r],1,ta,k);
printf("%d\n",a[cc]);
}
}

int main() {
//ios::sync_with_stdio(false);
int ca;
cin >> ca;
while(ca--){
solve();
}

return 0;

}
Prev
2021-03-27 12:01:00 # ACM
Next